Supplementary Material for:

TiCl₄ Mediated Reduction of 1,3-Diketones with BH₃-pyridine Complex: a Highly Diastereoselective Method for the Synthesis of *syn*-1,3-Diols.

Giuseppe Bartoli*, Marcella Bosco, M. Cristina Bellucci, Letizia Sambri

Dipartimento di Chimica Organica "A. Mangini", v.le Risorgimento 4, I-40136, Bologna Italy

Renato Dalpozzo

Dipartimento di Chimica, Università della Calabria, 87030 Arcavacata di Rende (CS), Italy

Enrico Marcantoni

Dipartimento di Scienze Chimiche, Via S.Agostino 1, I-62032 Camerino (MC), Italy

General Considerations: Flash chromatography was performed on Merck silica gel (0.040-0.063 nm). All reactions were carried out in oven dried glassware under dry argon atmosphere. ¹H-NMR, J-resolved and decoupling experiments were recorded at 300 MHz with a Varian Gemini instrument. ¹³C-NMR and DEPT experiments were acquired at 75 MHz with a Varian Gemini instrument. Chemical shifts are given in p.p.m. from Me₄Si. Coupling constants are given in Hertz.

Benzoyl acetone (1a), 6-methyl-2,4-heptanedione (1b), 2,2,5,5-tetramethyl-3,5-heptanedione (1e) and **dibenzoylmethane (1g)** are commercially available. **6-Phenyl-2,4-hexanedione (1c), 5-methyl-1-phenyl-2, 4-hexanedione (1d)** and **1-***p***-Cl-phenyl-1, 3-hexanedione (1f)** were obtained by hydrolysis (HCl, MeOH, H₂O, overnight) from the corresponding enaminoketones.¹

Compound 6-phenyl-2, 4-hexanedione $(1c)^2$ was recognized by comparison with literature data. Selected spectroscopic data for unknown products follow.

5-methyl-1-phenyl-2, 4-hexanedione (1d): ¹H NMR: 1.11 (d, 6H, 2CH₃, J_{HH}=6.9), 1.7 (bs, 1H, OH), 2.35-2.50 (m, 1H, CHMe₂), 3.60 (s, 2H, CH₂), 5.46 (s, 1H, CH), 7.20-7.40 (m, 5H, Ph); C₁₃H₁₆O₂ : calcd. C 76.43, H 7.90; found C 76.56, H 7.74.

1-*p***-Cl-phenyl-1, 3-hexanedione (1f):** ¹H NMR: 1.24 (t, 3H, CH₃, J_{HH}=7.3), 1.85-2.10 (m, 2H, CH₂), 2.60-2.75 (m, 2H, CH₂), 2.9 (bs, 1H, OH), 6.29 (s, 1H, CH), 7.50-7.90 (m, 4H, Ph); ¹³C NMR: 13.6 (CH₃), 19.0 (CH₂), 40.6 (CH₂), 101.1 (CH), 195.5 (C); C₁₂H₁₃ClO₂ : calcd. C 64.27, H

General procedure for the reduction of 1,3-diketones 1a-g: To a CH_2Cl_2 solution of 1,3-diketone 1 (0.2 g, 1eq) 1.1 eq of TiCl₄ (solution 1M in CH_2Cl_2) and 0.1 eq of pyridine are added at $-30^{\circ}C$. After 30 min the mixture is cooled to $-78^{\circ}C$ and an excess of BH₃-py (3-4 eq, solution 8M in pyridine) is added. After 2h the reaction is quenched with aqueous HCl (1 M). Then the reaction mixture is treated following Method A or Method B procedure:

Method A: The organic layer is separated, dried over MgSO₄ and the solvent is removed on a rotary evaporator. The crude product, a mixture of *syn*-**2** and of a boron cyclic derivative *syn*-**3**, is submitted to treatment with H_2O_2 in basic medium (EtOH, NaOH).³ After 3 days, the mixture is diluted with H_2O and extracted with Et₂O. The organic layer, separated and dried over MgSO₄, is concentrated under reduced pressure to give *syn*-**2**, which is purified by column chromatography on silica gel (petroleum ether/Et₂O= 70/30).

Method B: After quenching the reaction with aqueous HCl (1 M) the mixture is left to stir overnight. The organic layer, separated and dried over MgSO₄, is concentrated under reduced pressure to give *syn*-2, which is purified by column chromatography on silica gel (petroleum ether/Et₂O= 70/30).

Compounds $(1R^*, 3R^*)$ -1-phenyl-1,3-propanediol $(syn-2a)^4$, $(3R^*, 5S^*)$ -2,2,5,5-tetramethyl-3,5-heptanediol $(2e)^5$, $(1R^*, 3S^*)$ -1,3-diphenyl-1,3-propanediol $(2g)^6$ were recognized by comparison with literature data. Selected spectroscopic data for unknown products follow.

(**4R*, 6R*)-4-methyl-6-phenyl-1,3,2-dioxaborinan-2-ol** (*syn-***3a**): ¹H NMR: 1.30 (d, 3H, CH₃, J_{HH}=6.2), 1.55-1.70 (m, 1H, CH₂), 2.05-2.20 (m, 1H, CH₂), 4.25-4.40 (m, 1H, CHMe), 5.10 (dd, 1H, CH, J_{HH}=2.8, J_{HH}=11.5), 7.25-7.40 (m, 5H, Ph).

(2**R***, 4**S***)-6-methyl-2, 4-heptanediol (2**b**): ¹H NMR: 0.94 (d, 6H, 2CH₃, J_{HH}=6.5), 1.22 (d, 3H, CH₃, J_{HH}=6.2), 1.15-1.35 (m, 2H, CH₂), 1.40-1.60 (m, 2H, CH₂), 1.70-1.85 (m, 1H, CHMe₂), 2.8 (bs, 2H, OH), 3.90-4.00 (m, 1H, CH, J_{HH}=2.5, J_{HH}=8.3), 4.05-4.15 (m, 1H, CH, J_{HH}=2.7, J_{HH}=8.5); ¹³C NMR: 22.1 (CH₃), 23.2 (CH₃), 23.9 (CH₃), 24.2 (CH), 45.0 (CH₂), 47.3 (CH₂), 68.9 (CH), 70.9 (CH); $C_7H_{18}O_2$: calcd. C 62.63, H 13.52; found C 62.80, H 13.44.

(**2R*, 4S*)-6-phenyl-2, 4-hexanediol (2c):** ¹H NMR: 1.21 (d, 3H, CH₃, J_{HH}=6.1), 1.55-1.65 (m, 2H, CH₂), 1.70-1.85 (m, 2H, CH₂CH₂Ph), 2.60-2.80 (m, 2H, CH₂Ph), 3.5 (bs, 2H, OH), 3.85-3.95

J_{HH}=6.1), 7.15-7.35 (m, 5H, Ph); ¹³C NMR: 24.1 (CH₃), 31.6 (CH₂), 39.6 (CH₂), 44.4 (CH₂), 69.3 (CH), 72.4 (CH); C₁₂H₁₈O₂ : calcd. C 74.18, H 9.34; found C 3.97, H 9.42.

(2**R***, 4**R***)-5-methyl-1-phenyl-2, 4-hexanediol (2d): ¹H NMR: 0.80 (d, 3H, CH₃, J_{HH}=6.8), 0.81 (d, 3H, CH₃, J_{HH}=6.8), 1.35-1.60 (m, 3H, CH and CH₂), 2.67 (d, 2H, CH₂Ph, J_{HH}=6.5), 3.3 (bs, 2H, OH), 3.45-3.55 (m, 1H, CH, J_{HH}=3.6, J_{HH}=9.5, J_{HH}=6.8), 3.90-4.00 (m, 1H, CH, J_{HH}=2.2, J_{HH}=9.6, J_{HH}=6.5), 7.10-7.30 (m, 5H, Ph); ¹³C NMR: 17.3 (CH₃), 18.2 (CH₃), 34.0 (CH), 38.7 (CH₂), 44.6 (CH₂), 74.0 (CH), 77.4 (CH); C₁₃H₂₀O₂ : calcd. C 74.95, H 9.68; found C 75.16, H 9.84.

(**1R***, **3R***)-**1**-*p*-**Cl**-**phenyl-1**, **3**-**hexanediol** (**2f**): ¹H NMR: 0.84 (t, 3H, CH₃, J_{HH}=7.1), 1.20-1.45 (m, 4H, 2CH₂), 1.52 (dt, 1H, CH₂, J_{HH}=10.1, J_{HH}=14.9), 1.83 (dt, 1H, CH₂, J_{HH}=2.2, J_{HH}=14.9), 3.3 (bs, 1H, OH), 3.90-4.00 (m, 1H, CH, J_{HH}=10.1, J_{HH}<1), 4.1 (bs, 1H, OH), 5.22 (dd, 1H, CH, J_{HH}=10.1, J_{HH}=10.1, J_{HH}=2.2), 7.10-7.60 (m, 4H, Ph); ¹³C NMR: 14.0 (CH₃), 18.4 (CH₂), 40.1 (CH₂), 43.4 (CH₂), 71.7 (CH), 72.9 (CH); C₁₃H₁₇ClO₂ : calcd. C 63.13, H 7.51; found C 63.27, H 7.74.

¹ G. Bartoli, M. Bosco, C. Cimarelli, R. Dalpozzo, G. Guercio, G.Palmieri, *J. Chem. Soc., Perkin Trans. 1*, 2081,**1993**. ² Chen, Yuhpyng Liang; Mariano, Patrick S.; Little, Garrick M.; O'Brien, Daniel; Huesmann, Peter L., *J.Org.Chem.*, **1981**, *46*, 4643.

³ K. Smith in *Organometallic in synthesis*. A manual, (Ed.: M. Schlosser) Wiley-Interscience, London **1994**, cap. 6, p. 461-508.

⁴ T.H. Chan, K.T. Nwe, *J.Org.Chem.*, **1992**, *57*, 6107.

⁵ A. Guijarro, M. Yus, *Tetrahedron*, **1996**, *52*, 1797.

⁶ J.P. Deprés, C. Morat, J. Chem. Educ., **1992**, 69, A232-A239.